

应用小管径的高效制冷空调装置开发技术

丁国良

上海交通大学

2016-05-26

- 1. 小管径问题概述
- 2. 管内制冷剂传热与流动特性
- 3. 翅片侧传热流动模拟与翅片设计
- 4. 换热器热力性能模拟与优化设计
- 5. 整机热力性能模拟与优化设计
- 6. 降噪与长效
- 7. 结论

▶ "铜管-铝翅片"的翅片管式换热器是最常用的制冷剂 -空气热交换器

▶ 小管径提出的直接原因- 减少铜材料的消耗,降低成本

- ▶ 降低生产成本 管子细了,还可以更薄
- ▶ 提高传热效率 制冷剂可以更好与管子换热
- ▶ 减小空调器的体积
- ▶ 降低制冷剂充注量

应用小管径需要解决的主要问题

制造技术问题:

- 细径薄壁管子的制造
- 防止胀管收缩
- 薄壁细管的胀接焊

设计技术问题:

- 如何选管子 没有管内传热与压降特性的关联式了
- 如何设计翅片 没有为细管配套的翅片,没有计算翅片侧
 空气传热与压降特性的成果
- 如何设计换热器 5mm管直接替代7mm管产生4倍压降
- 如何设计整机 同时考虑管子、翅片、流路的变动

- 1. 小管径问题概述
- 2. 管内制冷剂传热与流动特性
- 3. 翅片侧传热流动模拟与翅片设计
- 4. 换热器热力性能模拟与优化设计
- 5. 整机热力性能模拟与优化设计
- 6. 降噪与长效
- 7. 结论

<u>目标</u>:

- 了解小管径内实际制冷剂-油混合物的换热与流动特性
- 建立相应关联式

蒸发工况:

- 建立制冷剂-油混合物蒸发换热与流动实验台
- 进行不同工况参数下的蒸发实验:管子尺寸、制冷剂-油混合物
 质流密度、油浓度、热流密度
- 开发关联式

冷凝工况:

- 建立制冷剂-油混合物冷凝换热与流动实验台
- 进行不同工况参数下的蒸发实验:管子尺寸、制冷剂-油混合物
 质流密度、油浓度、热流密度
- 开发关联式

5mm管和7mm管的换热系数的比值

结论:

5mm强化管内的换热系数比7mm强化管的换热 增大0%~100%

- 1) R410A-油混合物的摩擦压降随 平均油浓度、质流密度和干度 的增大而增大
- 2) 纯制冷剂R410A, 摩擦压降随着 干度的增大先增大后减小, 峰值 出现在干度为0.7~0.8左右

结论:

5mm强化管内的摩擦压降比7mm强化管的摩擦压降增大10%~30%

5 mm强化管内的冷凝换热

干度对换热系数的影响:

- 纯制冷剂R410A和1%油浓度,R410A-油混合物的换热系数随干度的 减小而减小
- 3%和5%油浓度,换热系数随着干度的下降先增大,在干度0.7左右 达到峰值,然后随着干度的下降而下降

5 mm强化管内的冷凝压降

 $x < 0.6: \Delta P_{r,o,frict} < \Delta P_{r,frict}$ $x > 0.6: \Delta P_{r,o,frict} > \Delta P_{r,frict}$

- 1. 小管径问题概述
- 2. 管内制冷剂传热与流动特性
- 3. 翅片侧传热流动模拟与翅片设计
- 4. 换热器热力性能模拟与优化设计
- 5. 整机热力性能模拟与优化设计
- 6. 降噪与长效
- 7. 结论

适应小管径的翅片开发问题概述

直接的问题:

- 翅片间距必须小到一定程度 强化结构风阻加大
- 不能照搬国外产品 几乎没有现成产品,不想多开翅片模,想
 用现成的大部分产品模具

<u>技术上的短缺</u>:

- 缺针对小管径翅片的设计方法
- 缺可以针对翅片析湿过程模拟的CFD软件
- 缺少小管径翅片的实验测试与关联式

开展的工作:

- 提出小管径翅片设计的一般原则
- 开发可以模拟复杂结构翅片析湿过程的模拟软件
- 进行小管径翅片的实验测试与关联式开发

一些现有翅片的问题分析

- 开缝类型选取目标:
- 换热好
- 空气侧压降小

▶百叶窗式开缝特点:

•切断散热带上空气侧边界层的发展、提高换热性能,缺点是空气侧压降较大;
▶桥式开缝特点:
•相比窗片,其换热性能略低,但是空气侧压降较小。

▶确定开缝尺寸:

•采用CFD模拟

•干工况可以用商业软件;湿工况得二次开发

翅片表面析湿过程的模拟

□ 空调器析湿过程的物理模型

翅片表面析湿过程的模拟

□模型计算结果-亲水强化翅片 波纹片 条缝片 百叶窗片 T=0.005 s T=0.005 s T=0.005 s T=0.1 s T=0.1 s T=0.1 s T=0.5 s T=0.5 s T=0.5 s

T=1.0 s

T=1.0 s

对于亲水强化翅片,冷凝水形成过程与平翅片不同。冷凝水更容易在强化结构处(例如波纹、开缝和百叶窗)形成,并沿重力方向流出翅片表面。

翅片表面析湿模型的实验验证

□可视化验证结果

模拟结果

实验结果

模拟结果

实验结果

- 1. 小管径问题概述
- 2. 管内制冷剂传热与流动特性
- 3. 翅片侧传热流动模拟与翅片设计
- 4. 换热器热力性能模拟与优化设计
- 5. 整机热力性能模拟与优化设计
- 6. 降噪与长效
- 7. 结论

三种基本的形式,可组成其余的形式

适用于多个换热块的位置排列

三维分布参数模型

Schematic diagram of typical control volume

考虑相邻管子通过翅片的导热

 $Q_{\rm r} + Q_{\rm a} + Q_{\rm front} + Q_{\rm back} + Q_{\rm top} + Q_{\rm bottom} = 0$

可选择"仿真"或"优化"

😵 081013_Cond_Gree_5mm_Improved_01.hes - Heat	Exchanger Simulation											×
<u>F</u> ile <u>E</u> dit <u>Input Simulation Result View H</u> elp												
🖆 🖨 🖬 🖻 💩 🗠 🗙 💫 🗞 🚳 🗖 🔶			Result in all control volumes-air									
			Path Pat	ni 💌								
			Tube B1	ock Row	Column	Contrl volume	Velocity(In) (m/s)	Velocity(Dut) (m/s)	Tdb (In) (C)	Tdb (Dut) (C)	Twb (In) (C)	^
结果输出界面			2	1 1	2	3	1.11	1.08	27.00	18.61	19.00	-
	General results		2	1 1	2	1	1.11	1.00	27.00	10.51	19.00	
Outlet Block1	Heat Exchange 4343 024 W	Print	1	1 1	1	2	1.11	1.08	27.00	18.69	19.00	-
	Pressure Drop 20 007 1D		1	1 1	1	3	1.11	1.00	27.00	10.57	19.00	
Iniet Iniet	B. C. inc. M. i. h. Stars	Save As C	13	1 2	1	3	1.08	1.07	18.57	14.94	16.13	-
	Keirigerant weight 239.006 g	Close	13	1 2	1	1	1.08	1.07	18.69	14.88	16.18	1
Patho.	Refrigerant of inlet		14	1 2	2	2	1.08	1.06	18.59	14.76	16.15	-
	Pressure 1855.100 kPa Temperature	68.568	14	1 2	2	3	1.08	1.06	18.59	14.67	16.14	
	Enthalpy 437.650 kJ/kg Mass Quality	1.130	15	1 2	3	3	1.08	1.06	18.56	14.50	16.14	-
	Superheat 20.567 C Mass Flow	23,000 8	- 13			-	1.00	1.06	10. 46	14. 37	16.10	1
	Kate J		夫	松	输出		1.00	1.06	10.36	14.25	16.05	-
	-Refrigerant of outlet			стн.	104 FT	-	1.00	1.06	18.33	14.11	16.10	-
	Pressure 1824.223 kPa Temperature	39.429						Path2 BI	ock1		,	1962
Air nov	Enthalpy 248.843 kJ/kg Mass Quality Subcooling 7.851 c Block1	-0.067 Details 00 C 输出							25 43 22 10 9 8 7 6 43 21 41 14 14 14 14 14 14 14 14 14 14 14 14	Ter tilet	nperature(C 74.94 72.02 69.10 66.18 63.27 60.35	2) 4 2 3 7 5 3
<u>z</u>	-						5				54.51	
											51.60	1
					3D	图像 \$	論出	1.1	7		48.68	1
			11.		1.00			(1.0)	(50)	· · · · ·	45.76	i
veada			V1ewp	ort an	gre:pf :	and heigh	tio Blocks	s(1:0) Tubes	(52) Jo	ints (56)	raths (6:1	1)

实例: 某R410A蒸发器7 mm → 5 mm优化设计 ——蒸发器结构和工况参数输入

nput						Þ
Block1 Block type Depth Ambient Temperatur	e <mark>I type ▼</mark> 22 mm re 35 C	Row numbe Height	r 2 500	nn 🤇	Rows Tubes Inlet a	ir
Direction C From 1	of Air Flow- ft to right	· Fr	om right ·	to left	:	
□ Sub blo	ck	Sub	ordinates	s to 🕅		
Relative I to main b	neight Lock	Rel	ative ang main bloc	gle sk	0	
Fin Fin type Fin Name	LouverFin LoverFin_kel	Fins C	Continuo	ous fin ed fin		
Fin pitch	1.4 mm	Min 10	Max 🔍	St	ep 1	
rength	000			···)	× 4	
- -	蒸发器	导结构	了参梦	敗		
7	蒸发器	结构	J参y	数	Cance	1
₹rigerant	蒸发器	结构	」参 教	数 □	Cance	,1
frigerant efrigerant	蒸发器			牧 	Cance	,1 X
frigerant efrigerant ass fractin f Oil	蒸发器 ^{ℝ4104}	●结格	D参数 Ok 1 sssure	数	Cance 	21
f figerant efrigerant efrigerant ass fracti f Oil ass flow r:	素发器 Raioa ate [] 3	子结核 可 % Pro 10 g/s Ent	J参3 Ok Ok sssure thalpy	次 №	Cance • 3058 kP 463 kJ	a //kg
Frigerant afrigerant ass fractif oll ass flow r: Specify ir C Specify C Specify C Specify C Specify	<mark>R410A</mark> m ate 3 let refrigera distribution distribution illaries	0i % Pro 0 g/s Env ant distrib	Ok Ok I essure thalpy oution ate ire	₿ No Sp	Cance J 3058 kP 463 kJ ecify	a /kg
Frigerant defrigerant lefrigerant lass flow r: Specify ir © Default C Specify C Use Cap orrection : otal heat	R410A on atte distribution distribution illaries factor for the Sactor for the	o di v Odi v Pro o g/s Erri a of flow r a of pressu * 天久	Ok Ok essure thalpy oution ate ure	₩	Cance 3058 kP 463 kJ ecify 乙参	a //kg

-			_				
1	Tube Ty	ypes					×
				卫/	レタ	\$4±±	与参 举
	Smoot	h Enna	ncea	四个	石首	「「「「	句参致,
	Tube .	Name	Tube	_kelo:			
	Out diame	de ter		5.31 m	m Th	ickness	0.21 mm
	Fin h	eight		0.14 m	m Fi	n helix	18 0
	Fin a	nev		41	an; Fir	gie o space	0.24
	angle	pon	J	410		. space	0.34 /m
	Fin n	umber		40			
	Corre	ction		1	Cor	rrection	1
	heat	transfe	r		pr	essure dro	p
4					[Cancel
	$\overline{}$				<u>i</u>		
	Inlet ai	~					X
Γ	Velocity	Dry-ba	lh tempe	rature	Vet-hul	h temperatu	re Pressure
L	Set val	lues of t	he sele	cted cel	15		
L		1	Unit:(m/	's) Up	date	Save as CSV	
L	Column	CV1	CV2	CV3	Sale	ίλг	1 余数~
L		1 700	1 700	1.000		4 > 2 +	199.30
L	2	1.190	1.790	1.790	1.790		
L	3	1.790	1.790	1.790	1.790		
L	4	1.790	1.790	1.790	1.790		
L	5	1.790	1.790	1.790	1.790		
L	6	1.790	1.790	1.790	1.790		
	7	1.790	1.790	1.790	1.790		
ľ	8	1.790	1.790	1.790	1.790		
L	9	1.790	1.790	1.790	1.790		
L	10	1.190	1.190	1.190	1.190		×
		\mathbf{i}				08	Cancel
1	Fin typ	es					
I	₩avy f	in Sli	EN E	4	Linge	余米	f
I	Fin Na	me	LoverF	in_ke	7/4	193	×
	Thickn	ess	<u></u>	0.105 m	n Tu	be collar	5.52 mm
	Longit	udinal	<u></u>	11 m	di N Tr	ameter ansverse	19 mm
	tube p Height	itch louwer	_	1.0 10	tu Pi	be pitch tch louwer	
	Au -1	1		21.05			1.2
	Angle	rouver	1	31.85	,		
	Correc factor heat t	tion for ransfer		1	Cor fac pre	rection tor for ssure drop	1
				Get D	at abase	Ok	Cancel

(c)3Path 非均匀布管

3Path优化结果

连接	图示	片距	换热量 (W)	同7mm 管比较换 热量增加	压降 (kPa)	同 7mm 比 较压降增 加	
均匀	(a)	19FPI	3321.6	0.1% <mark>↑</mark>	54.8	32.7% ↑	
均匀	(a)	20FPI	3336.0	0.5% ↑	55.6	34.6%↑	\mathbf{b}
非均匀	(b)	19FPI	3326.0	0.2% ↑	54.7	32.4% ↑	
非均匀	(b)	20FPI	3336.2	0.5% ↑	55.8	35.1% ↑	
5mm 替代		19FPI	3369.5	1.5% ↑	145.2	251.6%	(
原蒸发 器		19FPI	3318.6		41.3		

推荐采用的3Path优化方案

实例2: 某R410A蒸发器7 mm → 5 mm优化设计

-4Path管路连接小结

4Path优化结果

连接	图示	片距	换热量 (W)	同7mm 管比较换 热量增加	压降 (kPa)	同 7mm 管比较压 降增加	
X型	(a)	19FPI	3357.2	1.2% ↑	26.2	-36.6%↓	
< X型	(a)	20FPI	3374.2	1.7% ↑	26.6	-35.6%	推荐采用的4Path
对称	(b)	19FPI	3300.8	-0.5%↓	26.0	-37.0%↓	* 优化万条
对称	(b)	20FPI	3303.4	-0.5%	26.2	-36.6%↓	
非均匀	(c)	19FPI	3298.7	-0.6% ↓	26.0	-37.0%↓	
非均匀	(c)	20FPI	3304.0	-0.4% ↓	26.2	-36.6%↓	Rick 24
原管路5mm		19FPI	3369.5	1.5% ↑	145.2	251%↑	and the second se
原管路7mm		19FPI	3318.6		41.3		Air flow

● 上海交通大學

ao Tong University

(b)4path 对称布管 (c)4path 非均匀布管

- 1. 小管径问题概述
- 2. 管内制冷剂传热与流动特性
- 3. 翅片侧传热流动模拟与翅片设计
- 4. 换热器热力性能模拟与优化设计
- 5. 整机热力性能模拟与优化设计
- 6. 降噪与长效
- 7. 结论

一拖一的空调器仿真-输出界面

🔷 欢迎使用房间空调仿真软件演示	R. K.									
高效空调(26) 压缩机计算(26) 毛细管	计算(W) 冷凝器	计算(E) 蒸发器	计算(22) 制冷系	< <p>(统仿真(Y) 制冷剂()</p>	3) 帮助(11)					
🛄 💐 🗰 🗗										
	#******) and also prove			1
	※反器计算结果 仿育次数	出口压刀 输入	<u>へ口焙但</u> : λ 参数 (FT/Fe)	<u>全气侧进口十球温度</u> 輸λ	制/ 制/ 制/ 制/ 制/ 输λ 参数 (a/a)		<u></u>	- - - - - - - - - - - - -	<u> 田口焙</u> ▲ 輸出参数 (kT/kg)	
	1	. 95	265	27	30	.1	0.00	318.13	31.56	
	2	. 95	265	27	30	. 2	2.00	1.01	4665.33	
	3	. 95	265	27	30	. 3	0.00	0.00	783.04	
	4	. 95	265	27	30	. 4	31.56	4.00	1.01	
	6	. 95	265	21	30	.5	4005.33	21.57	6.00	
	7	95	265	27	30	7	1 01	4421 75	n nn 💌	
	•								<u> </u>	
								-		
K Figure 1			4					/// Figure 1		
File Edit Control Windows About								File Edit Co	n <u>t</u> rol <u>T</u> indows <u>A</u> bout	
3300 280 280 240 200 200 180 180 180 180 180 180 180 180 100 10	吉果			美 茂 蓝	压缩机	,		4,500 4,000 3,500 3,000 2,500 <u>8</u> 2,000 1,500 1,000 1,000	过想	热度结果
20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -	* * * 3 0.35 0.4 (m3/s)	4 0.45 0.5		Į	人 节流装置	ا 	J	0.1	*	* * 0.3 0.35 0.4 0.45 0.5 MVA(m3/s)
结果输出界面	面									

▶ 主界面

Step 1: Select the component
Step 2: Click the blank drawing area
Step 3: Create all the components
as step1 and step 2

Step 4: Select connecting mode Step 5: Click the components one by one Step 6: Define all the pipelines

as step 4 and step 5

▶ 部件参数输入-室外机

Outdoor unit setting dialog

- Input block structure
- Input tube and fin structures
- Input inlet air status
- Define the flow circuitry

- 系统性能结果

Results × h1 428 Cooling Capacity 3.11 kW Condensation Pressure 2950.3 kPa kJ/kg EER 2.95 Evaporation Pressure 931.24 kPa h2 466.03 kJ/kg Ref Mass Flowrate 20.41 g/s Ref Charge in Low Pressure Side 58.22 h3(h4) 274.05 a kJ/ka Total Power 1.05 kW Ref Charge in High Pressure Side 811.78 g SubCooling Degree 1.53 С Outlet Temperature of Compressor 75.87 C SuperHeat Degree 5.32 с 2 Condensation Pressure 2950.3 kPa Condensation Temperature 48.52 C P[kPa] Evaporeation Temperature 5 C Evaporation Pressure 931.24 kPa h[kJ/kg] ОК Cancel

- 制冷量 ٠
- EER ٠
- 冷凝温度/压力 •
- 蒸发温度/压力 •
- ۰ ...

- 室内机结果

Indoor Unit-General Results									
General Value									
Heat Exchange	3106.454	w							
Pressure Drop	34 500	k0-							
A ref	0.258	m2	h ref	4603.609	W/m2K				
O 2ph	-2995.801	w	h 2ph	9234.933	W/m2K				
Q	0.000	w	h.j	0.000	W/m2K				
Q_g	-106.519	W	h_g	364.374	W/m2K				
Refrigerant of inlet									
Pressure 928	.469 kPa	Tomos	ratura	4.8	336 C				
Enthalpy 274	.046 kJ/kg	Mass ()uality	0.3	305				
Superheat 0	.000 C	Mass F	low Rate	20.	163 g/s				
				,					
Refrigerant of outlet	_								
Pressure 893	.870 kPa	Tempe	rature	8.9	991 C				
Enthalpy 427	.899 kJ/kg	Mass (Quality	1.0	027				
Superheat 5	.318 C								
Block1 Block2 Block3									
Heat Capacity		1986.954	w						
Air flow rate		226.800	m3/h						
Heat transfer area		1.384	m2)-i-i-				
Heat transfer coefficient		193.097	W/m2K	L	/c calls				
Air of inlet	,								
Tdb 27.000 C	Twb	19.000	C Press	ure 10	01.330 kPa				
Air of outlet									
Tdb 8.603 C	Twb	8.597	C Press	ure 10	01.330 kPa				

- 室外机结果

General Value						
Heat Exchange		3846.812	w			
Pressure Drop		28.903	kPa			
A_ref		0.428	m2	h_ref	3023.217	W/m2K
Q_2ph		2894.458	w	h_2ph	3458.140	W/m2K
Q_I		74.160	w	hJ	2001.241	W/m2K
Q_g		870.952	W	h_g	1242.649	W/m2K
Refrigerant of	inlet					
Pressure	2945.398	kPa	Temper	ature	75.	506 C
Enthalpy	465.609	kJ/kg	Mass Q	uality	1.	302
Superheat	27.062	с	Mass Fl	ow Rate	20	459 g/s
Refrigerant of Pressure	outlet 2916.495	kPa	Temper	ature	46.	382 C
Refrigerant of Pressure Enthalpy Subcooling	outlet 2916.495 277.713 1.528	kPa kJ/kg C	Temper Mass Q	ature uality	46.	382 C
Refrigerant of Pressure Enthalpy Subcooling	outlet 2916.495 277.713 1.528	kPa kJ/kg C	Temper Mass Q	ature uality	46	382 C
Refrigerant of Pressure Enthalpy Subcooling lock1 Heat Capacity	outlet 2916.495 277.713 1.528	kPa kJ/kg C	Temper Mass Q 3839.593	ature uality W	46.	382 C
Refrigerant of Pressure Enthalpy Subcooling lock1 Heat Capacity Air flow rate	outlet 2916.495 277.713 1.528	kPa kJ/kg C	Temper Mass Q 3839.593 1144.704	ature uality W m3/h	46	382 C
Refrigerant of Pressure Enthalpy Subcooling lock1 Heat Capacity Air flow rate Heat transfer an	outlet 2916.495 277.713 1.528	kPa kJ/kg C	Temper Mass Q 3839.593 1144.704 7.712	w w3/h m2	46	382 C 022
Refrigerant of Pressure Enthalpy Subcooling Nock1 Heat Capacity Air flow rate Heat transfer of Heat transfer of	outlet 2916.495 277.713 1.528 rea pefficient	kPa kJ/kg C	Temper Mass Q 3839.593 1144.704 7.712 113.643	ature uality W m3/h m2 W/m2K	46	382 C 222
Refrigerant of Pressure Enthalpy Subcooling Nock1 Heat Capacity Air flow rate Heat transfer an Heat transfer of Air of inlet	outlet 2916.495 277.713 1.528 rea pefficient	kPa kJ/kg C	Temper Mass Q 3839.593 1144.704 7.712 113.643	ature uality W m3/h m2 W/m2K	46	382 C 222 Details
Refrigerant of Pressure Enthalpy Subcooling Nock1 Heat Capacity Air flow rate Heat transfer at Heat transfer at Air of inlet Tdb	outlet 2916.495 277.713 1.528 rea pefficient 5.000 C Tv	kPa kJ/kg C	Temper Mass Q 3839.593 1144.704 7.712 113.643 24.000 C	ature uality W m3/h m2 W/m2K : Pressu	46. -0.1	382 C 222 Details
Refrigerant of Pressure Enthalpy Subcooling lock1 Heat Capacity Air flow rate Heat transfer or Air of inlet Tdb 2 Air of outlet	outlet 2916.495 277.713 1.528 rea pefficient 5.000 C Tv	kPa kJ/kg C	Temper Mass Q 3839.593 1144.704 7.712 113.643 24.000 C	ature uality W m3/h m2 W/m2K Pressu	46. -0.1	382 C 222 Details

- 换热量 •
- 压降

...

.

- 过热度 •
- 空气侧出口温度 •

- 换热量 •
- 压降 •
- 过冷度
- 空气侧出口温度

٠ ...

一拖多的空调器仿真输出-图形

> 制冷工况

		Full load			Half load		Min load			
Item	Test Data	Simulation Results	Relative Error %	Test Data	Simulation Results	Relative Error %	Test Data	Simulation Results	Relative Error %	
Capacity (W)	15.3	15.41	0.72	8.32	8.35	0.36	5.54	5.55	0.18	
Power (W)	6.57	6.47	-1.52	2.14	2.09	-2.34	1.4	1.37	-2.14	
EER/COP	2.33	2.38	2.15	3.89	4.00	2.83	3.96	4.05	2.27	
P_{disc} (°C)	3083	3065	-0.58	2546	2512	-1.34	2609	2555	-2.07	
$P_{suc}(^{o}C)$	861	895.98	4.06	1246	1209	-2.97	1288	1245	-3.34	

▶ 制热工况

		Full load			Half load		Min load			
Item	Test Data	Simulation Results	Relative Error %	Test Data	Simulation Results	Relative Error %	Test Data	Simulation Results	Relative Error %	
Capacity (W)	18.12	18.3	0.99	9.37	9.41	0.43	4.87	4.88	0.21	
Power (W)	6.47	6.45	-0.31	2.93	2.9	-1.02	1.65	1.68	1.82	
EER/COP	2.80	2.84	1.43	3.20	3.24	1.25	2.95	2.90	-1.69	
P_{disc} (°C)	3075	2967	-3.51	2802	2799	-0.11	2445	2462	0.70	
$P_{suc}(^{o}C)$	734	819	11.58	865	844	-2.43	898	896	-0.22	

- 1. 小管径问题概述
- 2. 管内制冷剂传热与流动特性
- 3. 翅片侧传热流动模拟与翅片设计
- 4. 换热器热力性能模拟与优化设计
- 5. 整机热力性能模拟与优化设计
- 6. 降噪与长效
- 7. 结论

翅片气动噪声-计算结果

Sound field of a plain fin

Sound field of a straight strip fin

翅片管换热器积灰

▶ 实验1: 管排数2、 FP为1.3mm百叶窗片换热器积灰过程

▶ 实验2: 管排数2、 FP为1.5mm波纹片换热器积灰过程

模拟结果的验证

论 结

- ▶ 小管径可以大大节省铜材料,降低生产成本;
- 小管径铜管内的换热和压降特性与大管径管不尽相同,直接 将换热器中的换热管替换成小管径换热管会增加压降损失;
- ▶ 用小管径代替大管径时,应适当增加制冷剂流路的分路数;
- ▶ 小管径的翅片结构与大管径的翅片也不同,需要专门设计;
- 精准设计小管径换热器,需要开发析湿模拟软件、换热器三维分布参数仿真与优化设计软件、制冷空调装置整机仿真软件;
- 未来小管径制冷空调装置的开发,还应当关注噪音的降低与 长效性能的提高。

参考文献1-小管径铜管内传热与流动特性

- Xiangchao Huang, Guoliang Ding, Haitao Hu, Yu Zhu, Hao Peng, Yifeng Gao, Bin Deng. Influence of oil on flow condensation heat transfer of R410A inside 4.18mm and 1.6mm inner diameter horizontal smooth tubes. International Journal of Refrigeration, 2010, 33 (1): 158-169
- Xiangchao Huang, Guoliang Ding, Haitao Hu, Yu Zhu, Yifeng Gao, Bin Deng. Condensation heat transfer characteristics of R410A–oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes. Experimental Thermal and Fluid Science, 2010, 34: 845–856
- Haitao Hu, Guoliang Ding, Wenjian Wei, Xiangchao Huang, Zhence Wang. Heat transfer characteristics of refrigerant-oil mixtures flow boiling in a horizontal C-shape curved smooth tube. International Journal of Refrigeration, 2010, 33 (5): 932-943
- Xiangchao Huang, Guoliang Ding, Haitao Hu, Yu Zhu, Yifeng Gao, Bin Deng. Two-phase frictional pressure drop of R410A–oil mixture flow condensation inside 4.18 mm and 1.6 mm I.D. horizontal smooth tubes. HVAC&R Research, 2010, 16 (4): 453-470
- Xiangchao Huang, Guoliang Ding, Haitao Hu, Yu Zhu, Yifeng Gao, Bin Deng. Flow condensation pressure drop characteristics of R410A-oil mixture inside small diameter horizontal microfin tubes. International Journal of Refrigeration, 2010, 33 (7): 1356-1369
- Guoliang Ding, Haitao Hu, Xiangchao Huang, Bin Deng, Yifeng Gao. Experimental investigation and correlation of two-phase frictional pressure drop of R410A–oil mixture flow boiling in a 5 mm microfin tube. International Journal of Refrigeration, 2009, 32 (1): 150-161
- Haitao Hu, Guoliang Ding, Xiangchao Huang, Bin Deng, Yifeng Gao. Measurement and correlation of flow-boiling heat transfer of a R-410A/oil mixture inside a 4.18 mm straight smooth tube. HVAC&R Research, 2009, 15 (2): 287-314
- Hai-tao Hu, Guo-liang Ding, Xiang-chao, Huang, Bin Deng, Yi-feng Gao. Pressure drop during horizontal flow boiling of R410A/oil mixture in 5 mm and 3 mm smooth tubes. Applied Thermal Engineering, 2009, 29 (16): 3353-3365

- Hui Pu, Guo-liang Ding, Xiao-kui Ma, Hai-tao Hu, Yi-feng Gao. Long-term performance of air-side heat transfer and pressure drop for finned tube evaporators of air conditioners under intermittent operation conditions. International Journal of Refrigeration, 2010, 33 (1): 107-115
- Hui Pu, Guoliang Ding, Haitao Hu, Yifeng Gao. Effect of salt spray corrosion on air-side performance of finned-tube heat exchanger with hydrophilic coating under dehumidifying conditions. HVAC&R Research, 2010, 16 (3): 257-272
- Hui Pu, Guo-liang Ding, Hai-tao Hu, Yi-feng Gao. Effect of salt spray corrosion on air-side hydrophilicity and thermal-hydraulic performance of copper-fin heat exchangers. Heat and Mass Transfer, 2010, 46 (8-9): 859-867
- Hui Pu, Guo-liang Ding, Xiao-kui Ma, Hai-tao Hu, Yi-feng Gao. Effects of biofouling on air-side heat transfer and pressure drop for finned tube heat exchangers. International Journal of Refrigeration, 2009, 32 (5): 1032-1040
- Xiaokui Ma, Guoliang Ding, Yuanming Zhang, Kaijian Wang. Airside characteristics of heat, mass transfer and pressure drop for heat exchangers of tube-in hydrophilic coating wavy fin under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2009, 52(19-20): 4358-4370
- Xiaokui Ma, Guoliang Ding, Yuanming Zhang and Kaijian Wang. Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions. International Journal of Refrigeration, 2007, 30 (7): 1153-1167
- Xiaokui Ma, Guoliang Ding, Yuanming Zhang and Kaijian Wang. Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying conditions. Energy Conversion and Management, 2007, 48 (9): 2525-2532

参考文献3-整机的仿真与优化设计

- Weijiang Zhang, Chunlu Zhang, Guoliang Ding. On three forms of momentum equation in transient modeling of residential refrigeration systems. International Journal of Refrigeration, 2009, 32 (5): 938-944
- Schigang Wu, Guoliang Ding, Kaijian Wang, Masaharu Fukaya. An extension of a steady-state model for fin-and-tube heat exchangers to include those using capillary tubes for flow control. HVAC&R Research, 2008, 14 (1): 85-101
- Zhigang Wu, Guoliang Ding, Kaijian Wang, Masaharu Fukaya. Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube. International Journal of Thermal Sciences, 2008, 47: 985–997
- Schigang Wu, Guoliang Ding, Kaijian Wang, Masaharu Fukaya. Knowledge-based evolution method for optimizing refrigerant circuitry of fin-and-tube heat exchangers. HVAC&R Research, 2008, 14 (3): 435-452
- Guo-liang Ding. Recent developments in simulation techniques for vapour-compression refrigeration systems. International Journal of Refrigeration, 2007, 30 (7): 1119-1133
- Junwei Hu, Guoliang Ding. Effect of deflecting ring on noise generated by outdoor set of a split-unit air conditioner. International Journal of Refrigeration, 2006, 29 (3): 505-513
- Junwei Hu, Guoliang Ding. Effect of the air outlet louver on the noise generated by the outdoor set of a split-unit air conditioner. Applied Thermal Engineering, 2006, 26: 1735-1745
- Guo-Liang Ding, Chun-Lu Zhang, Tao Zhan. An approximate integral model with an artificial neural network for heat exchangers. Heat Transfer-Asia Research, 2004, 33(3): 153-160
- Jian Liu, WenJian Wei, GouLiang Ding, Chunlu Zhang, Masaharu Fukaya, Kaijian Wang, Takefumi Inagaki. A general steady state mathematical model for fin-and-tube heat exchanger based on graph theory. International Journal of Refrigeration, 2004, 27 (8): 965–973
- Guoliang Ding, Chunlu Zhang, Hao Liu. A fast simulation model combining with artificial neural networks for fin-and-tube condenser. Heat Transfer – Asian Research, 2002, 31(7): 551-557

谢谢!

