

王红朝

2016.05.20

合作共赢同创办来

受本次大会支持单位深圳市中鼎空调净化有限公司委托 参加本次大会做汇报,因此本次汇报的内容是针对中鼎公司 的产品系列的中温、大温差冷水系统的设计及应用进行介绍 ,不介绍类似蓄冰系统低温大温差系统;介绍的项目由中鼎 公司提供,如有侵权请联系中鼎公司。

祝深圳中鼎公司蓬勃发展、事业昌盛!

- 一、中温、大温差系统简介
- 二、中温系统的设计及应用
- 三、大温差系统的设计及应用
- 四、中鼎产品介绍

一、中温、中温大温差系统介绍

1. 空调供冷中温空调系统

空调冷水系统设计,常规系统设计冷水供水温度不 低于5 $^{\circ}$ C,一般取值5 $^{\circ}$ 9 $^{\circ}$ C;在温度、湿度分别调节的系 统中,干式高温盘管的冷水按照使用要求冷水供水温度 不低于16℃,一般取值16~19℃,为区别于常规冷水系 统、高温冷水系统,我们把空调冷水供水温度不低于9℃、 一般取值9~12℃的空调冷水系统称之为中温空调系统。 5℃温差运行的中温冷水系统典型设计温度为11/16℃。

一、中温、中温大温差系统介绍

2. 空调供冷大温差空调系统

- 常规的空调冷水系统中,供回水温度一般设计为5℃ 温差运行,当设计温差取值6~8℃时,我们称之为大 温差系统。
- •中鼎逆流风机盘管的大温差产品的典型运行温度设计为9/17℃。

一、中温、大温差系统介绍

冷水参数取值表

冷水参数取值表				
	常规冷水系统	中温冷水系统	高温冷水系统	
供水参数	5~9℃,不低于5℃,常见	9~12℃,不低于9℃,常见取	16~19℃,不低于16℃,	
	取值7℃。	值11℃。	常见取值18℃。	
温差设计	规范要求供回水温差不低	要求供回水温差不低于5℃,	要求供回水温差不低于	
	于5℃,常见7/12℃、	常见11/16℃、10/15℃、	3℃,常见16/19℃、	
	6/11 °C 、 6/12 °C 、 6/13 °C 、	9/17℃、9/16℃、9/15℃等供	17/20℃、18/21℃等供	
	5/11 °C 、 5/12 °C 、 5/13 °C	回水温度工况。	回水温度工况。	
	等供回水温度工况。			
适合系统的露点送风温度	一般14~16℃,不低于12℃。	一般14~16℃,不低于12℃。	送风温度要求大于室内	
范围		需要12℃送风的系统,供水	露点温度。	
		温度应设计为9℃。		
常见的空调末端设备	风机盘管、组合式空调箱、	风机盘管、组合式空调箱、	风机盘管	
	柜机	柜机	华森咨询 😿	

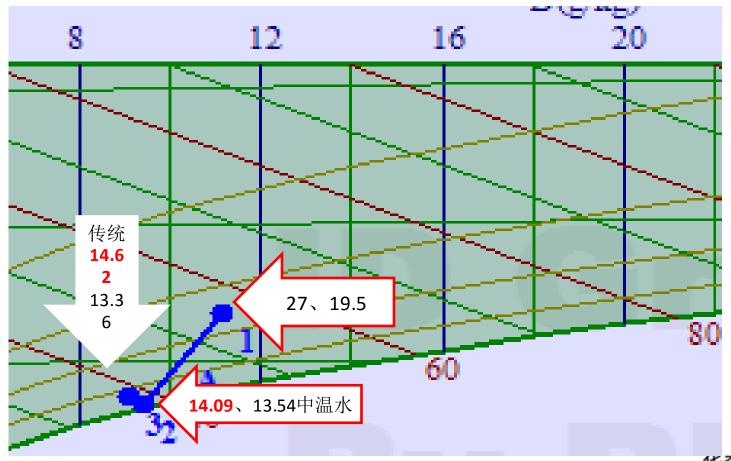
一、中温、中温大温差系统介绍

3. 中温、大温差系统节能减排的贡献

- 中温系统冷源11℃相对7℃出水, 主机节能大于15%;
- 大温差系统9/17℃相对5/13℃水系统,如果不是蓄冷 换热,主机节能大于15%,蓄冷系统,白天运行的主 机同样节能。
- 供水温度提高减少管道冷损失。
- •大温差系统9/17℃系统相对5/13℃系统,不仅冷源节能,水系统的输送能耗也有很大降低。

- 一、中温、大温差系统简介
- 二、中温系统的设计及应用
- 三、大温差系统的设计及应用
- 四、中鼎产品介绍

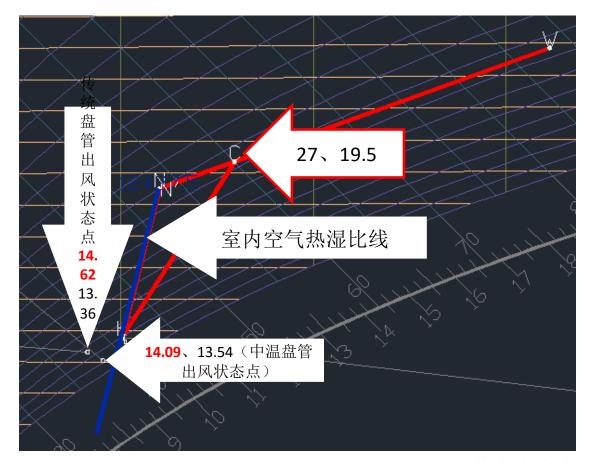
1. 11/16℃逆流风机盘管与7/12℃叉流风机盘管性能对比


某3排管叉流7/12℃参数与逆流11/16℃参数实测对比

	叉流常规	逆流大焓差	逆流大焓差
	(7℃进水)	(11℃进水)	(7℃进水)
风机盘管型号	FP85	FP85	FP85
风量(m³/h)	845	843	845
盘管长度(mm)	780	890	890
风盘高度(mm)	232	232	232
风盘厚度(mm)	290	290	290
进风干球(℃)	27	27	27
进风湿球(℃)	19.5	19.5	19.5
水流量(1/h)	860	842	1220
冷量(kW)	4981	4887	7125
进水温度(℃)	7	11.01	7
出水温度(℃)	12.04	15.97	12.03
水温差(℃)	5.04	4.96	5. 03
出风干球(℃)	14.62	14.09	10.66
出风湿球(℃)	13. 36	13.54	10.36

1. 11/16℃逆流风机盘管与7/12℃叉流风机盘管性能对比

某3排管叉流7/12℃参数与逆流11/16℃参数实测对比—I-D图



1. 11/16℃逆流风机盘管与7/12℃叉流风机盘管性能对比

某3排管叉流7/12℃参数与逆流11/16℃参数实测对比—I-D图

办公环境 设定人员1P/6m²,室 内参数25℃,相对湿 度55%。外围护40W/ m²,灯光+设备为 31W/m².人员按轻度劳 动。

- 2. 11/16℃逆流风机盘管的设计应用
 - 从上面的测试对比,中鼎开发的逆流盘管11/16℃性能参数与3排管叉流盘管7/12℃性能参数基本相同。
 - 新项目设计中,如果系统采用风机盘管加新风系统,设备的选型、水路系统的设计完全等同于原先大家习惯的7/12℃系统。
 - •对于旧改项目,完全可以等风量型号替换,当全楼逐步 替换完成后,可将冷水系统的运行水温调整为11/16℃。

- 3.11/16℃冷水系统对应的新风解决方案
 - •对于深圳地区,新风等焓送风,7/12℃冷水工况的4排盘管新风机组当采用11/16℃冷水系统时,需配置为6排盘管。
 - 对于深圳地区,新风等湿或除湿送风,7/12℃冷水工况的6排盘管新风机组当采用11/16℃冷水系统时,需配置为8排盘管。
 - 实测参数如下:

3.11/16℃冷水系统对应的新风解决方案

新风样本标注工况实测参数对比

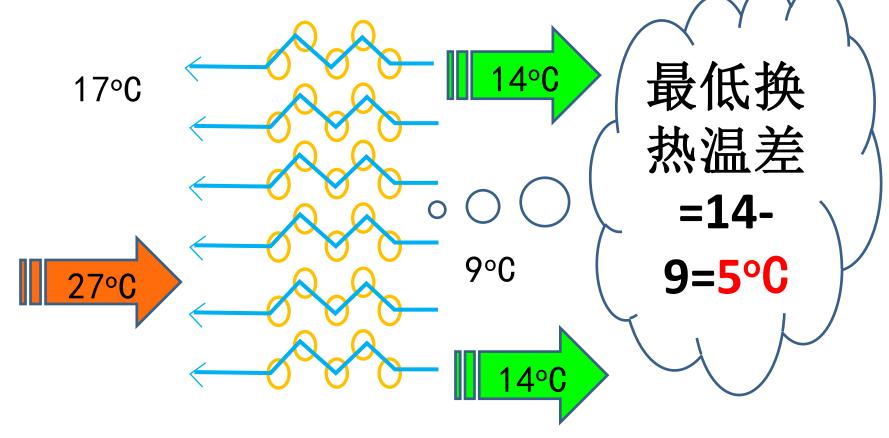
进水温 度 ^(oc)	排数	进风干 球湿球 温度(oc)	制冷量 (kW)	除湿量 (g/kg)	出风干 球(oc)	出风湿 球(oc)	相对湿 度(%)
7-12	4	35/28	64	9.6	17.3	16.6	93.8
7-12	6	35/28	77.5	11.6	13.8	13.6	97.9
11-16	6	35/28	67.1	9.8	16.2	16.1	99.0
11-16	8	35/28	78.6	11.3	13.9	13.9	99.7

- 4.11/16℃冷水系统对应的全空气解决方案
 - 当设计的出风参数高于14℃时,可通过增加盘管排数满足设计要求。实测参数如下: (很不利的高温高湿参数)

进水温度	排数	进风干湿	制冷量	除湿量	出风干	出风湿球	相对湿度	
(oC)		球温度(oc)	(kW)	(g/kg)	球 (oc)	(oC)	(%)	
7-12	4	30/29.3	77.1	13.1	17.7	17.6	99.4	
7-12	6	30/29.3	87.0	15.4	14.5	14.4	99.8	
11-16	6	30/29.3	73.7	13.5	17.1	17.1	99.9	
11-16	8	30/29.3	83.6	15.1	14.9	14.8	99.9	
		33, 23.3	33.3				华森咨询、	į
								١

- 4. 11/16℃冷水系统对应的全空气解决方案
 - 当设计的出风参数低于14℃时,可采用双温冷源空调箱,前提是冷源系统的双温冷源系统设计、蓄冷系统中的低温部分、或其他可用的低温冷源。
 - 当设计的出风参数低于14℃时,可采用自带冷源全空气空调箱,有排风热回收型机组、带预冷的水冷柜式热泵机组。

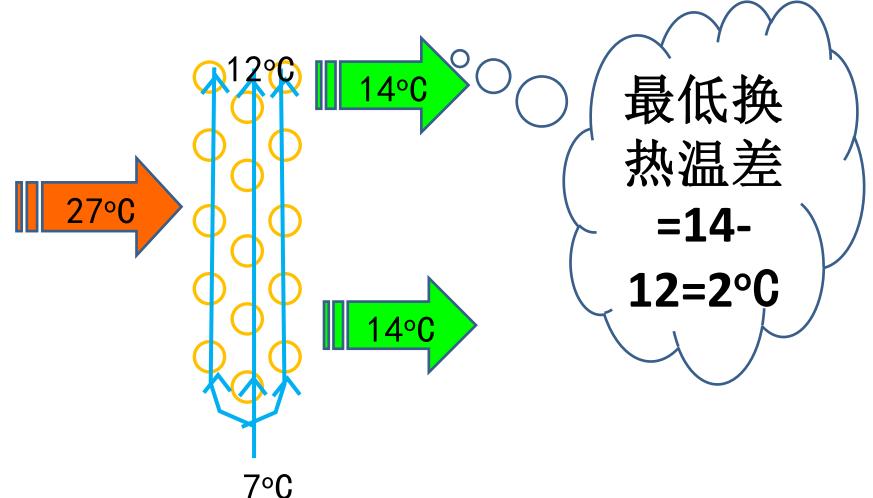
- 一、中温、大温差系统简介
- 二、中温系统的设计及应用
- 三、大温差系统的设计及应用
- 四、中鼎产品介绍



1. 9/17℃逆流风机盘管与7/12℃叉流风机盘管性能对比

	常规风盘	中鼎逆流盘管
	(7-12°C)	(9-17°C)
风机盘管型号	FP136	FP136
风量 (m³/h)	1390	1435
盘管长度(mm)	1185	1380
风盘高度(mm)	232	232
风盘厚度(mm)	290	290
进风干球(℃)	27	26.96
进风湿球(℃)	19.5	19.48
水流量(1/h)	1396	980
冷量(kW)	8097	8299
显热比	0.705	0.73
进水温度(℃)	7	9
出水温度(℃)	12.03	16.99
水温差 (℃)	5.03	7. 99
出风干球(°C)	14.90	13.70
出风湿球(°C)	13. 53	13. 23

1. 9/17℃逆流风机盘管与7/12℃叉流风机盘管性能对比



逆流六排小铜管

1. 9/17℃逆流风机盘管与7/12℃叉流风机盘管性能对比

HSAconsultation

叉流三排大铜管

- 2. 9/17℃逆流风机盘管的设计应用
 - 从上面的测试对比,中鼎开发的逆流盘管9/17℃性能参数与3排管叉流盘管7/12℃性能参数基本相同,降温能力大于常规3排管叉流盘管7/12℃ 运行。
 - 新项目设计中,如果系统采用风机盘管加新风系统,设备的选型完全等同于原先大家习惯的7/12℃系统。水系统水量计算需要注意是大温差。
 - •对于旧改项目,完全可以等风量型号替换,当全楼逐步替换完成后,可将冷水系统的运行水温调整为9/17℃。

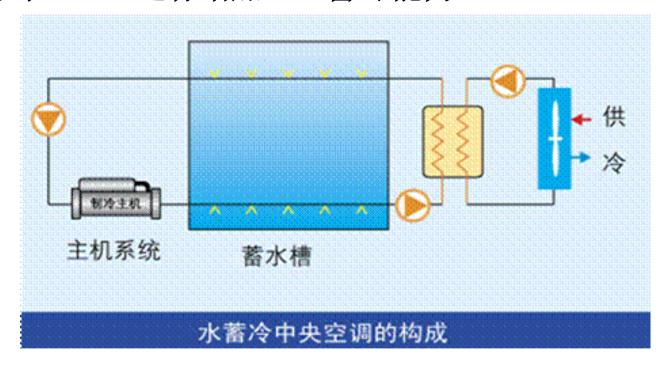
- 3.9/17℃冷水系统对应的新风解决方案
 - 对于深圳地区,新风等焓送风,7/12℃冷水工况的4排盘管管新风机组当采用9/17℃冷水系统时,需配置为6排盘管。
 - 对于深圳地区,新风等湿或除湿送风,7/12℃冷水工况的6排盘管新风机组当采用9/17℃冷水系统时,需配置为8排盘管。
 - 实测参数如下:

3. 9/17℃冷水系统对应的新风解决方案

进水温度 (℃)	排数	进风干球 湿球温度 (℃)	制冷量 (kW)	出风含 湿量 (g/kg)	出风干球(℃)	出风湿球(℃)	相对湿度 (%)
7-12	4	35/28	50.11	12.46	18.34	17.72	94.37
9-17	6	35/28	52.12	12.22	17.40	17.22	98.29
7-12	6	35/28	62.65	10.12	14.52	14.34	98.14
9-17	8	35/28	61.91	10.32	14.61	14.55	99.45

- 4. 9/17℃冷水系统对应的全空气系统解决方案
 - 当设计的出风参数高于14.5℃时,同样可通过增加盘管排数满足设计要求。
 - 当设计的出风参数低于14℃时,可采用双温冷源空调箱, 前提是冷源系统的双温冷源系统设计、蓄冷系统中的低 温部分、或其他可用的低温冷源。
 - 当设计的出风参数低于14℃时,可采用自带冷源全空气空调箱,有排风热回收型机组、带预冷的水冷柜式热泵机组。

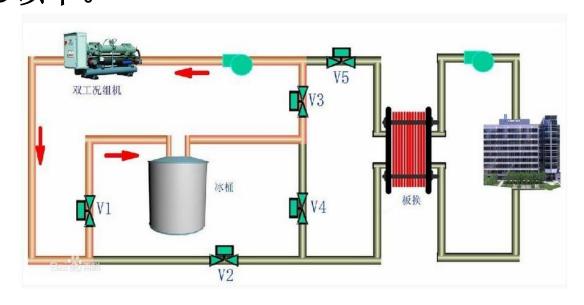
- 4. 9/17℃冷水系统相对7/12℃冷水系统的优势
- ① 主机能耗降低7%左右;
- ② 冷冻水泵能耗降低40%;
- ③ 冷冻水泵、冷冻管道、阀门管件保温等初投资降低40%;
- ④ 系统总耗能降低,其总配电减小,电容、电缆、电控系统初投资降低;
- ⑤ 节约安装空间。



5. 大温差逆流风机盘管的应用拓展

根据前面的介绍,应用逆流风机盘管设备时,9/17℃冷水系统可以完全胜任,那么对于蓄冷、区域集中冷源系统需要用户采用5/13、6/14、7/15、8/16℃的系统,逆流盘管设备更是完全胜任,并且还可以是系统更加优化,例如在水蓄冷、冰蓄冷、超高层建筑的应用。

5. 大温差逆流风机盘管的应用拓展 水蓄冷系统应用可设计蓄冷水池4/16℃运行,同一水池 相对4/12℃运行增加50%蓄冷能力。



注:这个图片工况不全,仅作示意用。

5. 大温差逆流风机盘管的应用拓展 冰蓄冷系统应用可以提供更多的大温差水温参数选择, 用户末端设备的进水温度可从5~9℃选取,不在局限在 7℃以下。

注: 图片仅作示意

5. 大温差逆流风机盘管的应用拓展 超高层分段设计更加从容。

7/15℃

250~350M

9/17℃

6/14°C

100~150M

7.5/15.5℃

5/13℃

6/14°C

主:图片仅作示意 -10M

- 一、中温、大温差系统简介
- 二、中温系统的设计及应用
- 三、大温差系统的设计及应用
- 四、中鼎产品介绍

-----中温、中温大温差中央空调缔造者

-----填补中央空调系统一大空白

1、中央空调水温分布图

高温水系列

中温水

大温差系列延伸

常规大温差

常温水系列

低温水系列

按进水温度分
类

14--18°C

高温(干式盘管)

11--16°C

中温

9--17°C

7--15°C

中温大温差

5--13°C

常规大温差

7--12°C

常温

< 5°C

低温

ZONDIN®

四、中鼎产品介绍

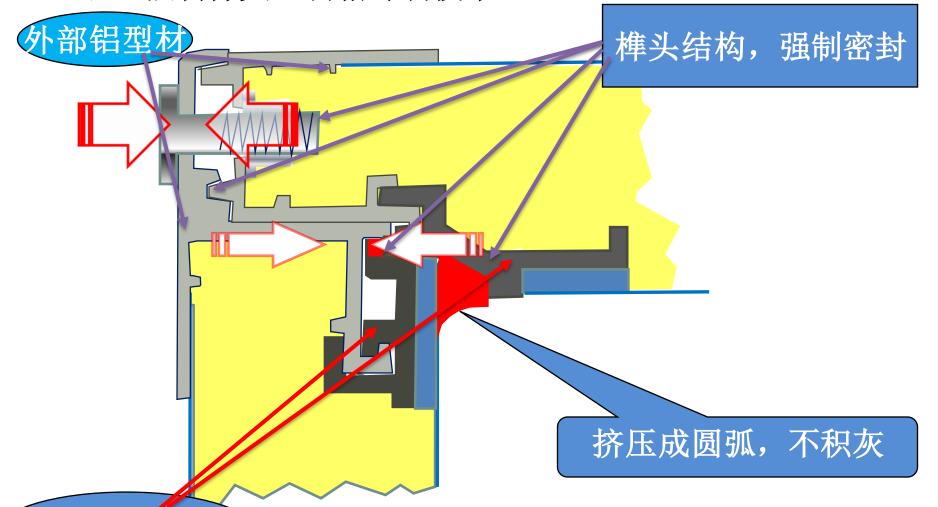
2、中鼎产品系列

- 2.1风机盘管--SFC系列(逆流式)
- 2.2空气处理机组-ZAH、ZMAH系列
- ★ 高温进出水温: 14/19 ℃, 15/20 ℃、16/21 ℃;
- ★ 中温进出水温: 11/16°C;
- ★ 大温差进出水温: 7/15 ℃ 、 9/17 ℃;

ZONDIN®

四、中鼎产品介绍

3、空气处理机组一铝塑强制榫头空调箱外形结构



榫头=迷宫=杜绝漏风=杜绝冷桥

4、铝塑强制榫头空调箱专利技术

内部特种工程塑料

5、产品应用案例

案例-1

项目名称:中电综合楼

项目配置:中温水末端+2台800RT离心机+1个200立方蓄能水罐;

投入使用中

5、产品应用案例

伯尔曼酒店(辽宁盘锦)

项目配置:中温水末端+2台400RT螺杆机

5. 产品应用案例

项目配置:中温水末端+2台750RT离心机+1个350立方蓄能水池;

项目名称:肇庆福澳酒店

5. 产品应用案例

项目配置:

水蓄冷+中温大温差系统

项目名称:

深圳科技园先健科技大 厦

5. 产品应用案例

★项目名称:兄弟高科技[深圳]工厂(2008年投入使用)

中温大温差系统+水蓄冷

★项目名称:布吉红星美凯龙家具广场(2009年投入使用)

中温系统+水蓄冷

★项目名称:深圳新豪方天际综合体(在建项目)

中温大温差系统+流态冰

★项目名称:前海卓越1号深港合作区二单元区域2号冷站

中温空调系统(在建项目)

★项目名称:深圳能源大厦(在建项目)

中温空调系统

应用范围:会展中心、机场、写字楼、商场、酒店、学校、工厂(净化)、

医院.....

视念量源规划

